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Abstract

Diminishing fertility in couples, over the last decades, is largely attributable 
to the drop in female fertility. However, increasing numbers of men, whose fertility 
theoretically lasts well into old age, are seeking fertility treatment at older ages; yet 
there are debates on sperm production and the impact of male age on fecundity. 
The aging process leads to andropause, affecting testicular tissue and reducing the 
major functional compartments of Sertoli and Leydig cells. A drop of the Sertoli cell 
number can affect spermatogenesis, while a fall of the Leydig cell number affects the 
production of testosterone, both of which could lead to reduce fecundity in men. 

INTRODUCTION
All physiological functions of organisms decrease as we age. 

A diminishing in male gonadal hormonal activity arouses the 
phenomena of “male menopause” or “male perimenopausal state”. 
We now determine this state as “andropause”. It occurs mainly in 
middle age and elderly men, when testosterone production and 
its plasma concentrations are reduced. This phenomenon could 
be accompanied by impaired spermatogenesis. Reduced levels of 
testosterone affect most male systems and tissues, including the 
central nervous system, endocrine and cardiovascular systems, 
muscles, bones, sexual and fertility functions.

Andropause development stems from the gradual and slow 
aging process of testicular tissue. This tissue structure may be 
functionally separated into two major compartments. The first 
one is seminiferous tubules with Sertoli cells and spermatogenic 
cells; both of them are an inalienable part of the spermatogenic 
process. The hypothalamic follicle stimulating hormone (FSH) 
acts on the Sertoli cells mainly to increase spermatogenesis. The 
second one is an interstitial tissue containing a Leydig cell section 
and testosterone production. Hypothalamic gonadotropin, a 
luteinizing hormone (LH), acts on the Leydig cells mainly to 
increase steroidogenesis. The control of male fertility requires 
accurate endocrine, paracrine and autocrine communications 
along the hypothalamus-pituitary-gonad (HPG) axis [1]. 
Actions of both gonadotropins are influenced by hypothalamic 
gonadotropin releasing hormone (GnRH). Kisspeptins, via the 
activation of kisspeptin receptor Gpr54 represent the main 
gatekeeper of the hypothalamic GnRH. Direct production and 
activity of kisspeptin in testis and its involvement in the control 
of Leydig cells, germ cells progression and sperm functions was 
shown [1]. Functionality of the Sertoli cells and spermatogenesis 

are directly dependent upon androgen influence and the function 
of Leydig cells; therefore, one testicular compartment closely 
depends on the second one. The aging process, leading to 
andropause, affects both compartments. As the female climacteric 
syndrome is partially reversible by oestrogen treatment [2], the 
question arises whether testosterone replacement therapy really 
provides a helpful analogy for man? 

Sertoli cell compartment

The adult seminiferous tubule contains epithelium of 5 to 8 
layers of cells. The Sertoli cells organize this epithelium. Each 
Sertoli cell has unique tight junctions (TJ) and basal adherens 
junctions (AJ), side by side with its neighbors, at the basal domain 
of Sertoli cells to create the blood-testis barrier (BTB). BTB must 
open periodically to permit germ cell movement to ensure the 
successful and continual production of spermatozoa, and also 
plays a crucial role in spermatogenesis [3,4]. At the age of 20-
48 years about 500 million Sertoli cells could be found in the 
testis; however, this number critically decreases to about 300 
million at the age of 50-85 years [5]. A drop in the Sertoli cell 
number can affect the integrity of BTB, reducing the entrance of 
sperm-germ cells to the spermatogenetic process, sperm quality 
and its production rate [6]. Reduction in the Sertoli cell count, 
as well, as a diminished function of these cells in aging men lead 
to decreased fertility. In a convenience sample of healthy men 
from a non-clinical setting, semen volume and sperm motility 
decreased continuously between 22-80 years of age [7]. There 
was no significant difference in sperm density, but both median 
semen volume and total sperm output per ejaculation reduced by 
47% and 64%, respectively in older men [8]. 

An oocyte donor program, from 500 males, revealed that 
all sperm parameters, such as: sperm volume, concentration 
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of spermatozoa, total count, motility and progressive motility 
of spermatozoa, gradually decline with male age [9]. Although 
male aging is associated with a significant decline in total sperm 
count, this change is not reflected in a decreased fertilization 
rate or a decreased live birth rate in the oocyte donation model 
[10], or in the pregnancy rate of regular in vitro fertilization 
(IVF) patients [11]. However, others report that pregnancy 
and live birth delivery are all inversely related to increasing 
paternal age [12,13], even in oocyte donation programs [14]. 
Risk of spontaneous abortion, similarly associated with paternal 
age, was higher in those older than 35 years, as compared to a 
paternal age of less than 35 [15,16]. 

Semen samples collected from men, between the ages of 
20 to 57 years, were correlated; it was found that there was 
an increasing percentage of sperm with highly damaged DNA 
in men aged 36–57 years, as compared with those aged 20–35 
years [17]. Sperm DNA damage is associated with a significantly 
increased risk of pregnancy loss, as was shown after classical IVF 
and intra-cytoplasm sperm injection (ICSI) [18,19].

Analysis of 17 000 intrauterine insemination (IUI) cycles 
shows a miscarriage rate of 13.7% per pregnancy in men 
younger than 30 years old, versus 32.4% in men older than 
45 years old [20]. Increasing paternal age is significantly 
associated with delayed conception and diminished pregnancy 
in a large population of fertile couples, which is evidence of 
declining fecundity in older men [21-23]. Most studies suggest 
that this age-dependent effect could be a reason for failures in 
both natural and IVF cycles. Moreover, advanced paternal age 
was associated with increased risks of birth defects, including: 
heart defects, tracheo-oesophageal atresia, musculoskeletal/
integumental anomalies, Down’s syndrome, achondroplasia and 
other chromosomal anomalies [24,25].

Leydig cell compartment

The number of Leydig cells in both testes of a 20-year-old 
male is up to 700 million and diminishes by half by the age of 
60 [26], as plasma testosterone levels decline. With an increase 
of age, there is a decline in the Leydig cell count and/or a 
dysfunction in hypothalamic   pituitary homeostatic control, or 
both, leading to an abnormal secretion of LH, resulting in a low 
testosterone production. Cross sectional and prospective studies 
show a decline in testosterone that starts in early middle age 
and then progresses in a linear manner [27-30]. This decline in 
plasma testosterone concentration is due to an age-associated 
increase in the plasma concentration of the sex hormone binding 
globulin (SHBG, which is synthesized in the liver), resulting in a 
more marked drop in the bioavailable testosterone amount [31-
33]. 

Normal testosterone levels are 270-1070 ngr/dL or 9-38 
nmol/L [34]. Levels of 8-12 nmol/L are related to the grey zone. 
Testosterone concentration at 10.4 nmol/L (300 ng/dL) was 
found to be critical for the sexual function in men; however, 
there is a variation between individuals [35]. An abnormally low 
concentration of testosterone (hypotestosteronemia) may be the 
result of a testicular dysfunction (primary hypogonadism), or a 
hypothalamic-pituitary dysfunction (secondary hypogonadism). 
These types of hypogonadism could be either congenital, 

or acquired. Concentrations of bioavailable testosterone 
decrease by as much as 50% between the ages of 25 to 75 years 
[36]. It has been proposed that with respect to bioavailable 
concentrations, as many as 50% of men over the age of 50, are 
hypotestosteronemic, as compared to the peak of early morning 
concentrations in young men [37]. By the age of 80 years, serum 
total testosterone concentrations have fallen about 75% and free 
testosterone concentrations to about 50% of what they were at 
the age of 20 [38]. 

Clinical manifestations of androgen deficiency may be 
divided into three major groups: physical, brain/behavioral and 
sexual. Physical manifestations of androgen deficiency include 
loss of bone mineral density, muscle wasting and weakness, loss 
of male body hair, gynecomastia and small or shrinking testes. 
Brain/behavioral manifestations of androgen deficiency include 
decreased cognitive functions and memory, depressed mood, 
irritability, low energy, poor motivation, sleep disturbance, 
increased sleepiness and reduced libido. Sexual manifestations of 
androgen deficiency include erectile dysfunction and infertility. 

Metabolic disorders 

Metabolic disorders could also affect testosterone bulk. The 
presence of obesity is associated with lower concentrations of 
bioavailable testosterone [39]; insulin concentrations have been 
found to be indirectly correlated with SHBG and testosterone 
concentrations [40]. Overweight men who had a BMI over 25 had 
a nearly 22% lower sperm concentration and 24% lower total 
sperm count, as compared to healthy weighted men [41], and 
positively related to estradiol levels [42]. Adipose tissue is capable 
of aromatizing testosterone to estradiol, and it is speculated that 
a reduced total testosterone production in obese men results in 
affecting the function of the seminiferous epithelium, as well as 
the synchrony of spermatogenesis. Estrogens exhibit high impact 
on proliferative and apoptotic events in testis, thus resulting as a 
local key modulators for the production, transport and maturation 
of spermatozoa [1]. Male aging is associated with an increase 
in body fat and reduced muscle mass and strength. This could 
be explained by an age-associated decline in growth hormone 
concentrations, which itself is associated with an increase in 
sex hormone binding globulin and, therefore, a reduction in 
bioavailable testosterone [43]. Profound hypotestosteronemia in 
younger men results in accelerated bone loss and osteoporosis 
[44]. In older men, bioavailable testosterone concentrations are 
positively correlated with bone mineral density at the radius, 
spine, and hip [45], and men with hypotestosteronemia have 
been reported to be at an increased risk of hip fracture [46]. 

An article from 1944 described symptoms reversed by 
testosterone replacement, but not by placebo, seen in men 
suffering from an age associated decline in testosterone 
concentrations [47]. It was demonstrated data of a treated group 
for three years, with almost 100 healthy men over the age of 65 
years with testosterone patches, which sufficiently raised their 
serum testosterone concentrations into the range appropriate 
for men in their 20s. The overall effects on bone mineral density 
were no different from those obtained with the placebo [48]. 
However, a significant increase in lean body mass and a fall in 
fat mass were observed [49]. Data on the effects of testosterone 
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replacement therapy on bone metabolism in hypotestosteronemic 
men suggest beneficial effects [50]. There is a consensus that 
testosterone supplementation in hypotestosteronemic men 
improves fat free mass, muscle bulk, and strength [51,52]. 
Testosterone administration to men with hypogonadism also 
improved cardiovascular risk factors [53].

Sexual and cognitive behavior

A decline in sexual interest and potency is usually associated 
with aging [54]. Such changes in sexual behavior are androgen 
dependent, but are not proven in all cases. Affective symptoms 
have long been associated with low levels of testosterone, 
whereas depressed mood is significantly correlated with low 
concentrations of bioavailable testosterone in older men [55]. 
Some longitudinal uncontrolled studies of hypotestosteronemic 
men have shown that symptoms of depression, anger, irritability, 
sadness, nervousness, friendliness, sense of wellbeing, and energy 
levels significantly improved with androgen treatment [56,57]. 
Fatigue may also occur with low levels of testosterone. During 
one prospective study, symptoms significantly improved with 
supplementation and decreased during androgen withdrawal; 
another showed significant improvements in energy levels and 
tiredness [58]. 

Although the proportion of men complaining of erectile 
dysfunction rises dramatically with age, only 50% of men 
between the ages of 50 and 70 years complain of potency loss 
[59]. Erectile dysfunction in elderly men is often of non hormonal 
etiology, while testosterone deficiency accounts for 6 45% of all 
cases [60].

Androgens also have an important role in the development 
of cognitive functioning; in men, strong correlations exist 
between testosterone concentrations and visuospatial abilities in 
certain domains [61]. Administration of pharmacological doses 
of exogenous testosterone to aging men has been shown to be 
associated with improved visuospatial skills [62].

Analysis for the determination of male fecundity and 
hypotestosteronemia

What the clinician needs for the correct management 
of infertility in middle-aged and elderly men is a diagnosis. 
Infertility is not a diagnosis - it is only a symptom. Semen analysis 
is routinely used to evaluate the male partner in infertile couples. 
The analysis of semen only occasionally gives the clinician a 
diagnosis as, for the most part, to the changes that take place in 
semen are largely non-specific. Over time it has become clear that 
the relationship between infertility and sperm numbers, sperm 
movement and sperm morphology is not a simple one. Pregnancy 
is known to occur with men having both very low sperm counts 
and poor sperm motility [63]. Sperm numbers can raise and fall 
sharply among otherwise fertile men. For this reason, sperm 
analysis should be prepared at least twice, with an interval of 
week or ten days. 

One common reason to test testosterone is to determine 
both male age and infertility. The test may also be necessary if 
hypotestosteronemia is suspected. A low level of testosterone in 
a male is associated with impotence and results in changes of the 
penile tissues causing erectile dysfunction [64], which could also 
be one of the reasons for the failure to ejaculate and infertility.

CONCLUSION
Men should be offered treatment with testosterone 

replacement therapy with hypotestosteronemia with symptoms 
of androgen deficiency, when contraindications have been 
excluded. However, it should be kept in the mind that for IVF 
male partners this kind of testosterone replacement therapy has 
to be avoided for its suppression of spermatogenesis [65,66].
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